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Agenda

Why not MapReduce?
• Iterative Algorithms

• Interactive Analytics

Spark at a glance

• Scala at a glance

• Distributed Data Parallelism

• Fault Tolerance

• Programming Model

• Spark Runtime

How to use Spark?

• RDD

• Transformations (Lazy)

• Actions (Eager)

• Reduction Operations

• Pair RDDs

• Join

• Shuffling and Partitioning
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Why not map
reduce?
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MapReduce flows 
are acyclic

Not efficient for 
some applications
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Figure1: Execution overview

Inverted Index: The map function parses each docu-

ment, and emits a sequenceof ⟨wor d, document I D⟩
pairs. The reduce function accepts all pairs for a given

word, sorts thecorresponding document IDs and emits a

⟨wor d, l i st(document I D)⟩ pair. Theset of all output

pairsformsasimpleinverted index. It iseasy to augment

this computation to keep track of word positions.

Distributed Sort: The map function extracts the key

from each record, and emitsa ⟨key , r ecor d⟩ pair. The

reduce function emits all pairs unchanged. This compu-

tation depends on the partitioning facilities described in

Section 4.1 and theordering propertiesdescribed in Sec-

tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-

terface are possible. The right choice depends on the

environment. For example, one implementation may be

suitablefor asmall shared-memory machine, another for

a large NUMA multi-processor, and yet another for an

even larger collection of networked machines.

This section describes an implementation targeted

to the computing environment in wide use at Google:

largeclustersof commodity PCsconnectedtogether with

switched Ethernet [4]. In our environment:

(1) Machinesaretypically dual-processor x86 processors

running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically

either 100 megabits/second or 1 gigabit/second at the

machine level, but averaging considerably less in over-

all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-

chines, and thereforemachine failuresarecommon.

(4) Storage is provided by inexpensive IDE disks at-

tached directly to individual machines. A distributed file

system [8] developed in-houseisused to managethedata

stored on these disks. Thefile system uses replication to

provide availability and reliability on top of unreliable

hardware.

(5) Users submit jobs to a scheduling system. Each job

consistsof aset of tasks, and ismapped by thescheduler

to a set of availablemachineswithin acluster.

3.1 Execution Overview

The Map invocations are distributed across multiple

machines by automatically partitioning the input data

To appear in OSDI 2004 3



Why not map
reduce?
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Zaharia, Matei, et al. "Spark: Cluster computing 
with working sets." HotCloud 10.10-10 (2010): 
95.

Iterative algorithms

Many common machine learning algorithms 
repeatedly apply the same function on the same 

dataset 
(e.g., gradient descent)

MapReduce repeatedly reloads
(reads & writes) data

which is costly



Why not map
reduce?
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Zaharia, Matei, et al. "Spark: Cluster computing 
with working sets." HotCloud 10.10-10 (2010): 
95.

Interactive analytics

Load data in memory and query repeatedly

MapReduce would re-read data



Lightning-fast cluster computing

Spark at a Glance.
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Before we talk about Spark… Let’s talk about Scala
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Java Generics

Scala

Lightbend (Typesafe)

Coursera: Functional Programming in Scala, 
École Polytechnique Fédérale de Lausanne

Prof. Martin Odersky



From Fast Single Cores to Multicores
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Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten and Krste Asanovic

Martin Odersky, "Working Hard to Keep It Simple”. OSCON Java 2011



Typical Bare Metal Servers
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https://softlayer.com



High Performance Computing (15/11)
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http://top500.org/lists/2015/11/

RANK SITE CORES

1 National Super Computer Center in Guangzhou 3,120,000
China

2 DOE/SC/Oak Ridge National Laboratory 560,640
United States

3 DOE/NNSA/LLNL 1,572,864
United States

4 RIKEN Advanced Institute for Computational Science (AICS) 705,024
Japan

5 DOE/SC/Argonne National Laboratory 786,432
United States

6 DOE/NNSA/LANL/SNL 301,056
United States

7 Swiss National Supercomputing Centre (CSCS) 115,984
Switzerland

8 HLRS - Höchstleistungsrechenzentrum Stuttgart 185,088
Germany

9 King Abdullah University of Science and Technology 196,608
Saudi Arabia

10 Texas Advanced Computing Center/Univ. of Texas 462,462
United States



Concurrency and Parallelism
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Manage concurrent execution threads

Execute programs faster using the
multi-cores



What can go wrong…?
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var x = 0

async { x = x + 1}

async { x = x * 2}

// x could be 0, 1, 2

Concurrent 
Threads

Shared Mutable 
State



Threads in Java
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http://booxs.biz/EN/java/Threads%20in%20Java.html

Manage concurrent & parellel executions

Threads Executors ForkJoin

Parallel
Streams

Completable
Futures



Scala at a Glance
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Static Typing Functional

Lightweight Syntax Object Oriented

Scala

- High Order Functions
- Immutable over mutable
- Avoid Shared Mutable States
- Efficient Immutable Data Structures



Scala Collections
Help to Organize Data

Immutable collections 
never change.

Collections are Sequential 
or Parallel
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https://docs.scala-
lang.org/overviews/collections/overview.html



Shared Memory Data Parallelism (Scala Parallel collections)
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Combine Results

Threads run independently

Split data
CPU

Thread
0

CPU 
Thread

1

CPU 
Thread

2

result = ratings.map(…)



Distributed Data Parallelism
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Network latency is a problem

Combine Results

Nodes run independently

Split data among nodes

Node 1

Node 3

Node 2

Node 4

result = ratings.map(…)



Distribution: Failure and Latency
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Task Latency Humanized (Latency * 1 Billion)
L1 cache reference 0.5 ns 0.5 s           One heart beat (0.5 s)

Branch mispredict 5 ns 5 s               Yawn

L2 cache reference 7 ns 7 s               Long yawn
Mutex lock/unlock 25 ns 25 s             Making a coffee

Main memory reference 100 ns             100 s           Brushing your teeth
Compress 1K bytes with Zippy 3,000 ns  =   3 µs 50 min        One episode of a TV show (including ad breaks)

Send 2K bytes over 1 Gbps network 20,000 ns  =  20 µs 5.5 hr          From lunch to end of work day
SSD random read 150,000 ns  = 150 µs 1.7 days       A normal weekend

Read 1 MB sequentially from 
memory 

250,000 ns  = 250 µs 2.9 days       A long weekend

Round trip within same datacenter 500,000 ns  = 0.5 ms 5.8 days       A medium vacation
Read 1 MB sequentially from SSD* 1,000,000 ns  =   1 ms 11.6 days     Waiting for almost 2 weeks for a delivery

Disk seek 10,000,000 ns  =  10 ms 16.5 weeks  A semester in university
Read 1 MB sequentially from disk 20,000,000 ns  =  20 ms 7.8 months  Almost producing a new human being

Send packet CA->Netherlands->CA 150,000,000 ns  = 150 
ms

4.8 years      Average time it takes to get a bachelor’s degree

Memory Disk
https://gist.github.com/jboner/2841832

http://norvig.com/21-days.html

Network

Fast--------------->Slow

https://gist.github.com/jboner/2841832
http://norvig.com/21-days.html
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Proceedings of the 9th USENIX conference on Networked Systems Design and 
Implementation. USENIX Association, 2012.



Spark Resilient Distributed Datasets (RDD)

Immutable collection of objects (Read-only)

Partitioned across machines

Once defined, programmer treats it as available (System re-builds it if lost / 
leaves memory)

Users can explicitly cache RDDs in memory

Re-use across MapReduce-like parallel operations

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 20



Main Challenge: Efficient fault-tolerance

Should be easy to re-build if part 
of data (e.g., a partition) is lost.

Achieved through coarse-grained 
transformations and lineage
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Fault-tolerance

Coarse transformations

• e.g., map applies the same function to the data items.

Lineage:

• Series of transformations that led to a dataset.

If a partition is lost, there is enough information to re-
apply the transformations and re-compute it
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Programming Model

Developers write a drive program

• high-level control flow

Think of RDDs as objects that represent datasets that you distribute 
among several workers, and transform and apply actions in parallel.

Can also use restricted types of shared variables
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Spark runtime

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 24

Worker 
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results 
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Input Data 
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Input Data 
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Input Data 
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Figure 2: Spark runtime. The user’s driver program launches

multipleworkers, which read datablocks from adistributed file

system and can persist computed RDD partitions in memory.

ule tasks based on data locality to improve performance.

Second, RDDs degrade gracefully when there is not

enough memory to store them, as long as they are only

being used in scan-based operations. Partitions that do

not fit in RAM can be stored on disk and will provide

similar performance to current data-parallel systems.

2.4 Applications Not Suitable for RDDs

As discussed in the Introduction, RDDs are best suited

for batch applications that apply the same operation to

all elements of a dataset. In these cases, RDDs can ef-

ficiently remember each transformation as one step in a

lineagegraph and can recover lost partitions without hav-

ing to log large amounts of data. RDDs would be less

suitable for applications that make asynchronous fine-

grained updates to shared state, such as a storage sys-

tem for aweb application or an incremental web crawler.

For these applications, it is more efficient to use systems

that perform traditional update logging and data check-

pointing, such as databases, RAMCloud [25], Percolator

[26] and Piccolo [27]. Our goal is to provide an efficient

programming model for batch analytics and leave these

asynchronous applications to specialized systems.

3 Spark Programming Inter face

Spark provides theRDD abstraction through a language-

integrated API similar to DryadLINQ [31] in Scala [2],

a statically typed functional programming language for

the Java VM. We chose Scala due to its combination of

conciseness (which isconvenient for interactiveuse) and

efficiency (due to static typing). However, nothing about

the RDD abstraction requires a functional language.

To use Spark, developers write a driver program that

connects to a cluster of workers, as shown in Figure 2.

The driver defines one or more RDDs and invokes ac-

tions on them. Spark code on the driver also tracks the

RDDs’ lineage. The workers are long-lived processes

that can store RDD partitions in RAM across operations.

As we showed in the log mining example in Sec-

tion 2.2.1, users provide arguments to RDD opera-

tions like map by passing closures (function literals).

Scala represents each closure as a Java object, and

these objects can be serialized and loaded on another

node to pass the closure across the network. Scala also

saves any variables bound in the closure as fields in

the Java object. For example, one can write code like

var x = 5; r dd. map( _ + x) to add 5 to each element

of an RDD.5

RDDs themselves are statically typed objects

parametrized by an element type. For example,

RDD[Int] is an RDD of integers. However, most of our

examples omit typessince Scala supports type inference.

Although our method of exposing RDDs in Scala is

conceptually simple, we had to work around issues with

Scala’s closure objects using reflection [33]. We also

needed more work to make Spark usable from the Scala

interpreter, as we shall discuss in Section 5.2. Nonethe-

less, we did not have to modify the Scala compiler.

3.1 RDD Operations in Spark

Table 2 lists the main RDD transformations and actions

available in Spark. We give the signature of each oper-

ation, showing type parameters in square brackets. Re-

call that transformations are lazy operations that definea

new RDD, while actions launch a computation to return

a value to the program or write data to external storage.

Note that someoperations, such as join, areonly avail-

able on RDDs of key-value pairs. Also, our function

names arechosen to match other APIs in Scala and other

functional languages; for example, map is a one-to-one

mapping, while flatMap maps each input value to one or

more outputs (similar to the map in MapReduce).

In addition to these operators, users can ask for an

RDD to persist. Furthermore, users can get an RDD’s

partition order, which is represented by a Partitioner

class, and partition another dataset according to it. Op-

erations such as groupByKey, reduceByKey and sort au-

tomatically result in a hash or range partitioned RDD.

3.2 Example Applications

We complement the data mining example in Section

2.2.1 with two iterative applications: logistic regression

and PageRank. The latter also showcases how control of

RDDs’ partitioning can improve performance.

3.2.1 Logistic Regression

Many machine learning algorithms are iterative in nature

because they run iterative optimization procedures, such

as gradient descent, to maximize a function. They can

thus run much faster by keeping their data in memory.

Asan example, the following program implements lo-

gistic regression [14], acommon classification algorithm

5We save each closure at the time it is created, so that the map in

this example will always add 5 even if x changes.



RDD
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Immutable (read-only) collection of objects partitioned 
across a set of machines, that can be re-built if a partition is 
lost.

Constructed in the following ways:

• From a file in a shared file system (e.g., HDFS)

• Parallelizing a collection (e.g., an array) divide into partitions and send to 
multiple nodes

• Transforming an existing RDD (applying a map operation)



Hadoop Distributed FS (HDFS) architecture – Different than Spark
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RDD

It does not exist at all time. Instead, there is enough 
information to compute the RDD when needed.

RDDs are lazily-created and ephemeral

Lazy: Materialized only when information is extracted from 
them (through actions!)

Ephemeral: Might be discarded after use
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Transformations (Lazy)

Lazy operations. The results 
are not immediately computed

Create a new RDD
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Actions (Eager)

RDDs are computed every time 
you run an action.

Return a value to the program or 
output the results (e.g., HDFS)
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Why Spark?
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Zaharia, Matei, et al. "Spark: Cluster computing 
with working sets." HotCloud 10.10-10 (2010): 
95.

MapReduce:
Simple API (map, reduce)

Fault-tolerant

Spark: 

• Simple and rich API. 

• Fault-tolerant

• Reduces latency using ideas from 
functional programming (immutability, 
in-memory).

• l00x more performant than MapReduce 
(Hadoop), and more productive!

Logistic regression in Hadoop and Spark



How does a Spark program looks like? (PySpark)
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Out[]: There are 20 movies about zombies... scary.

Driver

RDD

Transformation

Action



How does a Spark program looks like? (PySpark)
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Out[]: There are 20 movies about zombies... scary!

Out[]: There are 524 movies about romance <3

Driver

RDD
Transformation

Action

Let’s think about what happened…



Caching and Persistence

To prevent re-computing the RDDs, we can persist the data.

cache:

• Memory only storage

persist:

• Persistence can be customized at different levels (e.g., memory, disk)

• The default persistence is at memory level
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How does a Spark program looks like? (PySpark)
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Out[]: There are 20 movies about zombies... scary!

Out[]: There are 524 movies about romance <3

Driver

RDD

Transformation

Action

Persist

In the second time, the lines RDD was loaded from memory



Cluster Topology
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Driver 
Program

Cluster 
Manager 
(YARN/Mesos)

Worker Node 
(Executor)

Worker Node 
(Executor)

Worker Node 
(Executor)

Run tasks
Return Results
Persist RDDs

Contains the main
Creates RDDs
Coordinates the execution 
(transformations and actions)



YARN-cluster mode
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https://blog.cloudera.com/blog/2014/05/apache-spark-resource-management-and-yarn-app-models/



YARN-client mode
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https://blog.cloudera.com/blog/2014/05/apache-spark-resource-management-and-yarn-app-models/



Difference between running modes
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https://blog.cloudera.com/blog/2014/05/apache-spark-resource-management-and-yarn-app-models/



Cluster Topology - Evaluation
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Out[]: There are 20 movies about zombies... scary.
Action

Where are the zombie movies printed?



Cluster Topology - Evaluation
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Actions usually communicate between workers’ nodes and the 
driver’s node.

It is important to think about where the tasks are going to be 
executed.

Large RDDs may cause out of memory errors in the driver node 
for some actions (e.g., collect). In that case, it’s a good idea to 
output directly from the worker.



Reduction Operations
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Traverse a collection and combine elements to produce a single combined result. 

reduce(op) 

• Reduces the elements of this RDD using the specified associative and cumulative operator.

fold(zeroValue, op)

• Aggregate the elements of each partition, and then the results for all  the partitions, using a given 
associative function and a neutral "zero value."

• Requires the same type of data in the return.

aggregate(zeroValue, seqOp, combOp)

• Aggregate the elements of each partition, and then the results for all the partitions, using a given 
combine functions and a neutral "zero value."

• Possible to change the return type.



Pair RDD

Usually, we have large datasets that we
can organize by a key (e.g., movie_id, 
user_id)

Useful because it improves how we
handle the RDD

Pair RDDs have special methods for
working with the data associated to
the keys.

Dean, Jeffrey, and Sanjay Ghemawat. 
"MapReduce: simplified data 
processing on large 
clusters." Communications of the 
ACM 51.1 (2008): 107-113.
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GroupByKey example
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ReduceByKey example
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Word Count example
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Out[]:

('the', 20711)

('and', 15343)

('a', 10785)

('of', 9892)

('film', 9206)

('by', 8377)

('in', 7646)

('The', 7362)

('is', 6290)

('was', 5728)



Join
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You can combine Pair RDDs using a join. 

The combination can be by:

Inner joins (join)

• Key that appear in both Pair RDDs

Outer joins (left0uterJoin/right0uterJoin)

• Guarantees that on the RDD all they keys (left or right) will be present

• Keys that do not appear on the other RDD have a None value.



Shuffling and Partitioning
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Shuffle

Shuffle and partitioning is expensive! As it they have to send data in the network

Partitioning Partitioning



Spark Streaming

Motivation

• Big Data never stops

• Data is being produced all the time

Spark provides a DStream to handle sources that send data 
constantly
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DStream

Discretized Stream represents a continuous stream of data

Input data stream is received from source, or the processed data stream generated by transforming the input stream. Internally

DStream is a continuous series of RDDs

Each RDD in a DStream contains data from a certain interval

Similarly, we can apply transformations and actions to Dstreams.
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As a summary
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Spark is a distributed big data processing framework.

• Distribution brings new concerns: Node failure and latency

Uses Resilient Distributed Datasets (RDD) to distribute and parallelize the data.

• RDDs are lazily-created and ephemeral

• Caching and persistence is used to preserve a RDD in memory, disk, or both

RDDs are fault tolerant

• Able to recover the state of an RDD using coarse-grained transformations and lineage.

Transformations are lazy (e.g., map, filter, groupBy, sortBy, reduceByKey)

Actions are eager (e.g., take, collect, reduce, first, foreach) 

The topology of the cluster matters

Working with RDDs implies shuffling and partitioning

• Impact on performance due to latency

Spark provides Big Data Streaming processing via DStreams



That’s all for now!
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Thanks!

Questions?

Frederick Ayala-Gómez
frederick.ayala@aalto.fi

Tutorial: Batch and streaming processing with PySpark
Monday, 19 March, 14:15 » 16:00,
T2 / C105 (T2), Tietotekniikka, Konemiehentie 2
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