' CS-E4610
B Modern Database Systems

05.01.2018-05.04.2018

Aalto University
School of Science

Lecture 09
Spark for batch and streaming processing

FREDERICK AYALA-GOMEZ

PHD STUDENT IN COMPUTER SCIENCE, ELTE UNIVERSITY
VISITING RESEARCHER, AALTO UNIVERSITY

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 1

Agenda Al

Why not MapReduce? < e |terative Algorithms

e Interactive Analytics

/‘
e Scala at a glance

e Distributed Data Parallelism
Spark at a glance < e Fault Tolerance

e Programming Model

e Spark Runtime

hY4

e RDD

e Transformations (Lazy)

e Actions (Eager)

How to use Spark? < e Reduction Operations

e Pair RDDs

e Join

e Shuffling and Partitioning

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 2

Why not map
reduce?

MapReduce flows
are acyclic

Not efficient for
some applications

03/16/2018

Input Map Intermediate files
files phase (onlocal disks)

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

Reduce
phase

A!

Aalto University
School of Science

Output
files

Why not map
reduce?

Zaharia, Matei, et al. "Spark: Cluster computing
with working sets." HotCloud 10.10-10 (2010):
95.

03/16/2018

Iterative algorithms

Many common machine learning algorithms

repeatedly apply the same function on the same
dataset

(e.g., gradient descent)
MapReduce repeatedly reloads

(reads & writes) data
which is costly

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

School of Science

Why not map Interactive analytics
reduce?

Zaharia, Matei, et al. "Spark: Cluster computing
with working sets." HotCloud 10.10-10 (2010):

95. Load data in memory and query repeatedly

MapReduce would re-read data

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 5

03/16/2018

Spa

Lightning-fast cluster computing

Spark at a Glance.

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

Before we talk about Spark... Let’s talk about Scala

School of Science

[N\

’ Scala Java Generics
g : \ /
S R : |

e : . 0y
A e

| J
| N\

Lightbend (Typesafe)
N

AN

Prof. Martin Odersk - ing |
ror Martin Baersy Coursera: Functional Programming in Scala,

Ecole Polytechnigue Fédérale de Lausanne
- /

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 7

: : |
From Fast Single Cores to Multicores A

School of Science

1.E+07
3
1.E+06
¢ Transistors (in Thousands) b
. -
Eros ® Freguency (MHz) . .o
' ® Cores e
1.E+04 -
LS L R
n
1.E403 1— * - 5 -
m o
. g ¥
1.E4+02 +— * . . uwm _
u® .
1.E+01 +— . s © -
.
. u
LE+00 o= & v "
1.E_D1 1 I 1 1 I I 1
1970 1975 1980 1985 1990 1995 2000 2005 2010

Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten and Krste Asanovic
Martin Odersky, "Working Hard to Keep It Simple”. OSCON Java 2011

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

Typical Bare Metal Servers

A!

Aalto University
School of Science

Intel Xeon E5-2690 v3

Dual Intel Xeon E5-2690 v3 (24 Cores, 2.60
GHz)

64GB RAM (64GB maximum)
Up to 4 Internal Hard Drives

https://softlayer.com

03/16/2018

Intel Xeon E7-4820 v2

Quad Intel Xeon E7-4820 v2 (32 Cores, 2.00
GHz)

128GB RAM (3072GB maximum)
Up to 24 Internal Hard Drives

Intel Xeon E7-4850 v2

Quad Intel Xeon E7-4850 v2 (48 Cores, 2.30
GHz2)

128GB RAM (3072GB maximum)
Up to 24 Internal Hard Drives

Intel Xeon E5-4650

Quad Intel Xeon E5-4650 (32 Cores, 2.70
GHz2)

64GB RAM (1024GB maximum)
Up to 24 Internal Hard Drives

Intel Xeon E5-2690 v3

Dual Intel Xeon E5-2690 v3 (24 Cores, 2.60
GHz)

256GB RAM (256GB maximum)
Up to 4 Internal Hard Drives

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

Intel Xeon E5-2650

Dual Intel Xeon E5-2650 (16 Cores, 2.00
GH2)

128GB RAM (128GB maximum)
Up to 4 Internal Hard Drives

High Performance Computing (15/11) A!

School of Science

| RANK | ST | CORES |
— National Super Computer Center in Guangzhou
China

— DOE/SC/Oak Ridge National Laboratory
United States
United States

— RIKEN Advanced Institute for Computational Science (AICS)

Japan

— DOE/SC/Argonne National Laboratory
United States

— DOE/NNSA/LANL/SNL
United States

Swiss National Supercomputing Centre (CSCS)
Switzerland

— HLRS - Héchstleistungsrechenzentrum Stuttgart

Germany

— King Abdullah University of Science and Technology
Saudi Arabia

Texas Advanced Computing Center/Univ. of Texas
United States

http://top500.0rg/lists/2015/11/

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 10

Concurrency and Parallelism sy,

Concurrenk = Twe Queuce One C‘Qg‘-‘l ﬁ"‘d“;\

S 133 '
FRxxERIA f_ \ é Manage concurrent execution threads
4%34228x3 1 4%

4413321244142 ——
; & \ Execute programs faster using the

| multi-cores
PR iET ATy ey @ ‘

® .)0. A"%“l\v 2043

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 11

What can go wrong...?

School of Science

Concurrent
Threads

varx=0

async{x=x+ 1}

Shared Mutable async { x = x * 2}
State // x could be 0, 1, 2

Threads in Java

A!

Aalto University
School of Science

Elocking

monitor
obtained

Attempt accessing

guarded resource
thread.start()

Waiting
lock.notify(),

lock.notifyall()
Runnable

lock.wait()
Running

run(} method

Thread.sleep()
completes

Interrupted
Time elapsed

Sleeping

http://booxs.biz/EN/java/Threads%20in%20Java.html

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

03/16/2018

Manage concurrent & parellel executions

Executors

Completable

Parallel
Futures

Streams

Scala at a Glance

School of Science

/
Static Typing

Lightweight Syntax
\

Scala

Functional

Object Oriented

/

03/16/2018

High Order Functions

Immutable over mutable

Avoid Shared Mutable States
Efficient Immutable Data Structures

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 14

Scala Collections
Help to Organize Data

Immutable collections
never change.

Collections are Sequential
or Parallel

https://docs.scala-
lang.org/overviews/collections/overview.html

03/16/2018

e

E

MumericRange

IndexedSeq LinearSeq

Stream

Range

o

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 15

. . Al
Shared Memory Data Parallelism (Scala Parallel collections) e,
user_id movie_id rating timestamp result = ratings.map(...)
5513 2020 4 959710399 —_E
CPU = 2 | d
2372 110 4 974675977 Thread . §| 3 Split data
0 2 C
3973 2001 4 966357968 = i 7
48 360 2 978066474 — Z
CPU z V2 .
1021 3873 5 975008402 Thread . | | s | Threads run independently
3601 2919 5 966640755 1 : i 7
5152 2262 4 962834153 C
CPU == ,
5115 3186 4 962307039 Thread . ‘ §| : Combine Results
1104 2395 3 974921595 2 xg -

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 16

A!

Distributed Data Parallelism st

Node 1 Node 2
— -~ | ce e - ?I:f 1128 3504 4 974907449 - _:
- 550 3 o7eesizzs Thread . | 3 1125 784 3 1018464072 U0 B“s
et a0 4 sesmsees R il o o s R Split data among nodes
o e e o Tl;,j ""'édézi'"""1b'2's'"""21"'6'72)'1'5'7'6'55'"';;'U"' s
1004 2568 2 975042992 Thread . |G| 3 5181 2476 5 1037810320 Thread . || ° i?
1 il F—
3823 2348 4 965942528 : el i T
..........3.3......5559.......3..5.75555565......;;;... g S oo s areonserr _l:: Nodes run independently
2069 1747 4 974659419 trread | B[2794 1276 4 972920942 Thrzead : >i 5
3469 2115 3 967155526 2 ol 2624 2926 <)

973651923 < %

[|
Node 3 —— Node 4

user_id movie_id rating timestamp ! . .user_id movie_id rating timestamp Comblne RESUItS
1044 10974 974966184 cPU 5 5513 2020 4 959710399 PU —L:
214 2380 4 976901020 Thread . | 2| © 2372 10 4 974675077 Thread . | E| < I;
i 2 s ’
= 0 E
- 3973 2001 4 966357968 :
o o S - . .
ou [Tk 48 360 2 978066474 U — Network latency is a problem
1050 2692 4 974962477 Thread = g 3 1021 3873 5 975008402 Thread " E 8
1 gt 5 2
5621 288 5 959098092 : 3601 2919 5 966640755 ! S
2235 1911 3 974614456 z 5152 2262 4 962834153 z
CPU s ks cPU s ke
3361 1917 4 967687406 Thread . E‘ g 515 3186 4 962307039 Thread . | 5| 2
5y 2 50 2
3021 2858 5 970506920 2 1104 2395 3 974921595 2 £

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

Distribution: Failure and Latency

oo
o3
o
o3
[L]

wp
T =
=Cc

versity
ience

Compress 1K bytes with Zippy
Send 2K bytes over 1 Gbps network 20,000 ns = 20 us

SSD random read

Round trip within same datacenter
Read 1 MB sequentially from SSD*
Disk seek

Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

Latency Humanized (Latency * 1 Billion)

0.5s One heart beat (0.5 s)
5s Yawn
7s Long yawn
25s Making a coffee
100s Brushing your teeth
3,000 ns = 3us 50 min One episode of a TV show (including ad breaks)
5.5hr From lunch to end of work day
150,000 ns =150 us 1.7days A normal weekend
2.9days Alongweekend
500,000 ns =0.5ms 5.8days A medium vacation
1,000,000 ns = 1ms 11.6days Waiting for almost 2 weeks for a delivery

10,000,000 ns = 10 ms 16.5 weeks A semester in university
20,000,000 ns = 20 ms 7.8 months Almost producing a new human being

150,000,000 ns =150 4.8years Average time it takes to get a bachelor’s degree
ms

- Disk Network

03/16/2018

https://gist.github.com/jboner/2841832
http://norvig.com/21-days.html|

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 18

https://gist.github.com/jboner/2841832
http://norvig.com/21-days.html

03/16/2018

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, Ion Stoica
University of California, Berkeley

Abstract

We present Resilient Distributed Datasets (RDDs), a dis-
tributed memory abstraction that lets programmers per-
form in-memory computations on large clusters in a
fault-tolerant manner. RDDs are motivated by two types
of applications that current computing frameworks han-
dle inefficiently: iterative algorithms and interactive data
mining tools. In both cases, keeping data in memory
can improve performance by an order of magnitude.
To achieve fault tolerance efficiently, RDDs provide a
restricted form of shared memory, based on coarse-
grained transformations rather than fine-grained updates
to shared state. However, we show that RDDs are expres-
sive enough to capture a wide class of computations, in-
cluding recent specialized programming models for iter-
ative jobs, such as Pregel, and new applications that these
models do not capture. We have implemented RDDs in a
system called Spark, which we evaluate through a variety
of user applications and benchmarks.

tion, which can dominate application execution times.

Recognizing this problem, researchers have developed
specialized frameworks for some applications that re-
quire data reuse. For example, Pregel [22] is a system for
iterative graph computations that keeps intermediate data
in memory, while Hal.oop [7] offers an iterative MapRe-
duce interface. However, these frameworks only support
specific computation patterns (e.g., looping a series of
MapReduce steps), and perform data sharing implicitly
for these patterns. They do not provide abstractions for
more general reuse, e.g., to let a user load several datasets
into memory and run ad-hoc queries across them.

In this paper, we propose a new abstraction called re-
silient distributed datasets (RDDs) that enables efficient
data reuse in a broad range of applications. RDDs are
fault-tolerant, parallel data structures that let users ex-
plicitly persist intermediate results in memory, control
their partitioning to optimize data placement, and ma-
nipulate them using a rich set of operators.

The main challenoe in decioninoe RNNc¢ ic definino a

Proceedings of the 9th USENIX conference on Networked Systems Design and

Implementation. USENIX Association, 2012.

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

Spark Resilient Distributed Datasets (RDD)

-

Immutable collection of objects (Read-only)

-
-

Partitioned across machines

AN

-
-

AN

Once defined, programmer treats it as available (System re-builds it if lost /
leaves memory)

-
-

Users can explicitly cache RDDs in memory

AN

AN

-
/

-

Re-use across MapReduce-like parallel operations

03/16/2018

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

School of Science

Main Challenge: Efficient fault-tolerance

p
Should be easy to re-build if part

of data (e.g., a partition) is lost.

~

N
/
Achieved through coarse-grained

transformations and lineage
N

!
~

)

School of Science

Fault-tolerance

-

-

Coarse transformations

e e.g., map applies the same function to the data items.

-

o

Lineage:

e Series of transformations that led to a dataset.

-

-

If a partition is lost, there is enough information to re-
apply the transformations and re-compute it

School of Science

03/16/2018

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

Programming Model

School of Science

Developers write a drive program

e high-level control flow

p
Think of RDDs as objects that represent datasets that you distribute
among several workers, and transform and apply actions in parallel.

N\

\
>
Can also use restricted types of shared variables

- j

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 23

Spark runtime

School of Science

results

tasks

T
(
a1

:o__v;vm(m
m;.-ms!uf
A)

|5

"
Ty

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

RDD

Immutable (read-only) collection of objects partitioned
across a set of machines, that can be re-built if a partition is
lost.

~

-
-

Constructed in the following ways:

-

)
N

)

e From a file in a shared file system (e.g., HDFS)

e Parallelizing a collection (e.g., an array) divide into partitions and send to
multiple nodes

e Transforming an existing RDD (applying a map operation)

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

Aalto University
School of Science

Hadoop Distributed FS (HDFS) architecture — Different than Spark sty

Metadata (Name, replicas, ...):
Metadata,ops’"[Namenode /home/ffoo/data, 3, ...

Block ops

Read Datanodes Datanodes

= : Replication
[]
\

Blocks

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

RDD Al

School of Science

4)

It does not exist at all time. Instead, there is enough
information to compute the RDD when needed.
\ /
4)
RDDs are lazily-created and ephemeral
\ /
4)
Lazy: Materialized only when information is extracted from
them (through actions!)
\ /
4)
Ephemeral: Might be discarded after use

- J

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING vy

Transformations (Lazy) @

ccccccccccccccc

- p
Lazy operations. The results

are not immediately computed

N Y,
- ™
Create a new RDD

- /

Actions (Eager)

-
RDDs are computed every time

you run an action.

~

N
/
Return a value to the program or

output the results (e.g., HDFS)
N

)
~

/

School of Science

Why Spark?

Zaharia, Matei, et al. "Spark: Cluster computing
with working sets." HotCloud 10.10-10 (2010):
95.

03/16/2018

Simple API (map, reduce)

MapReduce: Fault-tolerant
=
e Simple and rich API.
e Fault-tolerant
e Reduces latency using ideas from
Spark: < functional programming (immutability,

in-memory).

e |00x more performant than MapReduce
(Hadoop), and more productive!

[
o=

N~
— 120 1 110
8
E 90 -
= ¥ Hadoop
g ©0 .
£ Spark
=
=
o

0.9
ﬂ |

Logistic regression in Hadoop and Spark

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 30

=Cc

versity
ience

T =

oo
o3
o
o3
N -

How does a Spark program looks like? (PySpark)

wp

Driver Transformation

spark pyspark.SparkContext(master="1local[*]", appName="tour")
lines spark.textFile("hdfs://namenodehost/dbpedia.csv")
zombie movies = lines.filter(lambda x: "zombie" x.lower())
count = zombie_movies.count() Action
print(f"There are {count} movies about zombies... scary.")

Ooutl]:

There are 20 movies about zombies... scary.

RDD

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 31

How does a Spark program looks like? (PySpark) :

Driver \

spark pyspark.SparkContext(master="local[*]", appName="1tour") B e e ale]:

RDD |-> lines spark.textFile("hdfs://namenodehost/dbpedia.csv")
zombie movies = lines.filter(lambda x: "zombie" x.lower())
count = zombie movies.count()

"’/”)' print(f"There are {count} movies about zombies... scary!")

Action L\(romantic_movies = lines.filter(lambda x: "romantic"” X.lower())
count = romantic_movies.count()

print(f"There are {count} movies about romance <3")

Out[]: There are 20 movies about zombies... scary!
OQut[]: There are 524 movies about romance <3

=y Let’s think about what happened...

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 32

Caching and Persistence

School of Science

To prevent re-computing the RDDs, we can persist the data.
cache:
e Memory only storage
{persist: }

e Persistence can be customized at different levels (e.g., memory, disk)
e The default persistence is at memory level

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 33

How does a Spark program looks like? (PySpark) :

Driver \ Persist

spar pyspark.SparkContext(master *|1", appName="tour
RDD lines = spark.textFile("hdfs://namenodehost/dbpedia.csv").persist()
zombie movies = lines.filter(lambda x: "zombie™ X.lower())
count = zombie movies.count()
print(f"There are {count} movies about zombies... scary!")

Action

romantic_movies = lines.filter(lLambda x: "romantic" x.lower())
count = romantic_movies.count()
print(f"There are {count} movies about romance <3")

Out[]: There are 20 movies about zombies... scary!
OQut[]: There are 524 movies about romance <3

Transformation

In the second time, the lines RDD was loaded from memory

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 34

=Cc

versity
ience

T =

oo
o3
o
o3
[L]

Cluster Topology

wp

Contains the main ‘AZ Driver
Creates RDDs Spark Program
Coordinates the execution
(transformations and actions)
Cluster
Manager
(YARN/Mesos)

Run tasks |

Return Results

<’\Z Worker Node
Persist RDDs prK

<’\3 Worker Node
(Executor) rK

<’\3 Worker Node
(Executor) rK

(Executor)

Spa

Spa

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 35

A!

YARN-cluster mode st

YARN Resource
Manager

YARN Container

Client ResouTeE

Launch application

1lE

:
¢

Issue application commands
Launch Spark Executor

Y
YARN ModeManager

YARN Container

https://blog.cloudera.com/blog/2014/05/apache-spark-resource-management-and-yarn-app-models/

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 36

YARN-client mode A'

School of Science

YARN Resource
Manager

YARN Container

i N !
Client application 2

L

Issue application commands
Launch Spark Executor

L i
YARN ModeManager

YARN Conta YARN Container

https://blog.cloudera.com/blog/2014/05/apache-spark-resource-management-and-yarn-app-models/

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 37

: . |
Difference between running modes A

Aalto University
School of Science

Driver runs in: Application Master Client Client

Who requests resources? Application Master Application Master Client

Who starts executor YARN NodeManager YARN NodeManager Spark Slave
processes?
Persistent services YARN YARN Spark Master and
ResourceManager ResourceManager Waorkers
and ModeManagers and NodeManagers
Supports Spark Shell? Mo Yes Yes

https://blog.cloudera.com/blog/2014/05/apache-spark-resource-management-and-yarn-app-models/

03/16/2018

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

38

oo
o3
o
o3
N -

Cluster Topology - Evaluation

[0
==
S¢c

versity
ience

Spar . \" . mastel * > l.4|..|.. th':"

lines = spark.textFile(" hdfs /fnamenodehostfdbpedla csv").persist()

zombie movies - lines. Fllterfirnbdr x: "zombie" X.lower())

Illnes Fllter(trﬁbﬁr x: "zombie" X.lower()).foreach(Llambda x: print(x))
count zomble movies.count()
print(f"There are {count} movies about zombies... scary!")
Out[]: There are 20 movies about zombies... scary.]
Action

VoI
[0 o

*— |Where are the zombie movies printed?

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 39

Cluster Topology - Evaluation

-

Actions usually communicate between workers’ nodes and the
driver’s node.

~

N
/
It is important to think about where the tasks are going to be
executed.

AN

-
/
Large RDDs may cause out of memory errors in the driver node

for some actions (e.g., collect). In that case, it’s a good idea to

koutput directly from the worker.

J
N

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

40

School of Science

Reduction Operations e
Traverse a collection and combine elements to produce a single combined result.
reduce(op)
e Reduces the elements of this RDD using the specified associative and cumulative operator.
[fold(zeroVaIue, op)]

e Aggregate the elements of each partition, and then the results for all the partitions, using a given
associative function and a neutral "zero value."

e Requires the same type of data in the return.

[aggregate(zeroVaIue, segqOp, combOp) }

e Aggregate the elements of each partition, and then the results for all the partitions, using a given
combine functions and a neutral "zero value."

e Possible to change the return type.

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 41

Pair RDD

Dean, Jeffrey, and Sanjay Ghemawat.
"MapReduce: simplified data
processing on large

clusters." Communications of the
ACM 51.1 (2008): 107-113.

most of our computations involved applying a map op-
eration to each logical “record™ in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately.

03/16/2018

Usually, we have large datasets that we

can organize by a key (e.g., movie_id,

user_id)

~

e
4
Useful because it improves how we
handle the RDD

o

J
N

Pair RDDs have special methods for
working with the data associated to

the keys.
5 Yy

AN

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

42

School of Science

GroupByKey example

03/16/2018

GroupBYy

Key

(a,1)
(b, 1)

(a, 1)
(a, 1)
(b, 1)
(b, 1)

(a 1)
(a, 1)
(a,1)
(b, 1)
(b, 1)

(b, 1)

Ry T el

(a 1)
(a 1)
(a, 1)
(a, 1)
(@ 1)
(a, 1)

—* (a, 6)

(b, 1)
(b, 1)
(b, 1)
(b, 1)
(b, 1)

(b, 1)

— (b, 6)

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

43

School of Science

ReduceByKey example

03/16/2018

ReduceByKey

(a, 1)

(b, 1)

(a, 1)
(b, 1)

(a 1)
(a, 1)
(b, 1)
(b, 1)

(a, 2)
(b, 2)

(a, 1)
(a, 1)
(@, 1)__, (a?3)
(b,1) (b3
(b, 1)

(b, 1)

Ry T el

(a, 1)
(@, 2)—* (a, 6)
(a 3)

(b, 1)
(b, 2) = (b, 6)
(b, 3)

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

44

School of Science

AI
alto Uni
'ChOoOIl O!

versity
ienc

Word Count example

Aalto U
School

spark pyspark.SparkContext(master="spark://my cluster:7070", appName="word count™)
lines spark. tfltF__TE "hdfs: ,,hnmEHGdEtht,dprdld csv")
word_count = lines.flatMap(Llambda x: [(w,1) W x.split(" ")]).reduceByKey(add).sortBy(l
WC word_count.take(18):
print(wc)
Outl[]:
('the' 20711)
('and' 15343)
('a', 10785)
('of', 9892)
("film', 920606)
('by', 8377)
('"in', 76406)
('"The', 7362)
('"is', 6290)
('was', 5728)

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

J O I n Sehool of Science
- N
You can combine Pair RDDs using a join.
\ .
The combination can be by:
; .
Inner joins (join)
.)

e Key that appear in both Pair RDDs

{Outer joins (leftOuterJoin/rightOuterloin) }

e Guarantees that on the RDD all they keys (left or right) will be present
e Keys that do not appear on the other RDD have a None value.

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 46

Shuffling and Partitioning

Help on method parallelize in module pyspark.context:

parallelize(c, numSlices=None) method of pyspark.context.SparkContext instance
Distribute a local Python collection to form an RDD. Using xrange
is recommended if the input represents a range for performance.

A!

Aalto University
School of Science

Partitioning

Partitioning

(a, 1)
(b, 1)

GroupByKey

(a, 1)
(a 1)
(b, 1)
(b, 1)

y —

ReduceByKey

(a 1)
(a 1)
(a, 1)
(b, 1)
(b, 1)
(b, 1)

(a, 1)
(b, 1)

(a 1)
(b, 1)

(a 1)
(a 1)
(b, 1)
(b, 1)

(a 2)

" (b, 2)

(a, 1)
(a 1)
(a 1)
(b, 1)
(b, 1)
(b, 1)

(@ 3)
(b, 3)

Shuffle

Rl R

Rl N

(a 1)
(a 1)
(a 1)
(a 1)
(a 1)
(a 1)

—* (a, 6)

(b, 1)
(b, 1)
(b, 1)
(b, 1)
(b, 1)
(b, 1)

—* (b, 6)

(a 1)
(a,2)—* (a, 6)
(a 3)

Shuffle and partitioning is expensive! As it they have to send data in the network

(b, 1)
(b, 2)— (b, 6)
(b, 3)

03/16/2018

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

47

S par k Streamin g oty
Motivation |:> SPOFK [>m
Stfeomlng Dashboards

e Big Data never stops
e Data is being produced all the time

Spark provides a DStream to handle sources that send data

constantly
RDD @ time 1 RDD @ time 2 RDD @ time 3 RDD @ time 4
DStream = = - Lirlata from _ (flata from L rjiata from L] c_:lata from | _)
timeOto 1 time 1to 2 time 2to 3 time3to 4

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 48

03/16/2018

DStream

A!

Aalto University
School of Science

Discretized Stream represents a continuous stream of data

Input data stream is received from source, or the processed data stream generated by transforming the input stream. Internally

DStream is a continuous series of RDDs

Each RDD in a DStream contains data from a certain interval

Similarly, we can apply transformations and actions to Dstreams.

03/16/2018

lines ___| linesfrom | __ | linesfrom lines from lines from
DStream timeO0to 1 time 1to 2 time 2to 3 time3to4
flatMap
operation
words —ud words from . words from words from words from
DStream time0to 1 time 1to 2 time 2to 3 time3to4

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

)

As a summary A!

School of Science

()

Spark is a distributed big data processing framework.

. J

e Distribution brings new concerns: Node failure and latency

Uses Resilient Distributed Datasets (RDD) to distribute and parallelize the data.

. J

* RDDs are lazily-created and ephemeral
e Caching and persistence is used to preserve a RDD in memory, disk, or both

RDDs are fault tolerant

* Able to recover the state of an RDD using coarse-grained transformations and lineage.

()

Transformations are lazy (e.g., map, filter, groupBy, sortBy, reduceByKey)

. J
()

Actions are eager (e.g., take, collect, reduce, first, foreach)

. J
()

The topology of the cluster matters

. J

Working with RDDs implies shuffling and partitioning

e Impact on performance due to latency

()

Spark provides Big Data Streaming processing via DStreams

. J

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 50

That’s all for now! A!

School of Science

Tutorial: Batch and streaming processing with PySpark
Monday, 19 March, 14:15 » 16:00,

T2 / C105 (T2), Tietotekniikka, Konemiehentie 2

Thanks!
Questions?

Frederick Ayala-Gomez
frederick.ayala@aalto.fi

03/16/2018

LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 51

Credits and References Al

School of Science

e Slides from Michael Mathioudakis from previous Aalto’s Modern Database Systems Course.

e https://spark.apache.org/docs/2.2.0/streaming-programming-guide.html

 Big Data Analysis with Scala and Spark, Dr. Heather Miller, Ecole Polytechnique Fédérale de
Lausanne.

e Zaharia, Matei, et al. “Learning Spark: Lightning-Fast Big Data Analysis”. O'Reilly Media 2015.

e Zaharia, Matei, et al. "Spark: Cluster Computing with Working Sets." HotCloud 10 (2010): 10-
10.

e Zaharia, Matei, et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-
memory cluster computing." Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation.

* Learning Spark: Lightning-Fast Big Data Analysis, by Holden Karau, Andy Konwinski, Patrick
Wendell, Matei Zaharia

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 52

https://spark.apache.org/docs/2.2.0/streaming-programming-guide.html

