
Lecture 09
Spark for batch and streaming processing

FREDERICK AYALA-GÓMEZ
PHD ST UDEN T I N COM PUT ER SCI EN CE , ELT E UN I VERS I TY
V I S I T IN G R ESEA RCHER , A A LTO UN I VERS I T Y

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 1

CS-E4610
Modern Database Systems

05.01.2018-05.04.2018

Agenda

Why not MapReduce?
• Iterative Algorithms

• Interactive Analytics

Spark at a glance

• Scala at a glance

• Distributed Data Parallelism

• Fault Tolerance

• Programming Model

• Spark Runtime

How to use Spark?

• RDD

• Transformations (Lazy)

• Actions (Eager)

• Reduction Operations

• Pair RDDs

• Join

• Shuffling and Partitioning

03/16/2018 2LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING

Why not map
reduce?

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 3

MapReduce flows
are acyclic

Not efficient for
some applications

User
Program

Master

(1) fork

worker

(1) fork

worker

(1) fork

(2)

assign

map

(2)

assign

reduce

split 0

split 1

split 2

split 3

split 4

output
file 0

 (6) write

worker
(3) read

worker

(4) local write

Map
phase

Intermediate files
(on local disks)

worker output
file 1

Input
files

(5) remote read

Reduce
phase

Output
files

Figure1: Execution overview

Inverted Index: The map function parses each docu-

ment, and emits a sequenceof ⟨wor d, document I D⟩
pairs. The reduce function accepts all pairs for a given

word, sorts thecorresponding document IDs and emits a

⟨wor d, l i st(document I D)⟩ pair. Theset of all output

pairsformsasimpleinverted index. It iseasy to augment

this computation to keep track of word positions.

Distributed Sort: The map function extracts the key

from each record, and emitsa ⟨key , r ecor d⟩ pair. The

reduce function emits all pairs unchanged. This compu-

tation depends on the partitioning facilities described in

Section 4.1 and theordering propertiesdescribed in Sec-

tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-

terface are possible. The right choice depends on the

environment. For example, one implementation may be

suitablefor asmall shared-memory machine, another for

a large NUMA multi-processor, and yet another for an

even larger collection of networked machines.

This section describes an implementation targeted

to the computing environment in wide use at Google:

largeclustersof commodity PCsconnectedtogether with

switched Ethernet [4]. In our environment:

(1) Machinesaretypically dual-processor x86 processors

running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically

either 100 megabits/second or 1 gigabit/second at the

machine level, but averaging considerably less in over-

all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-

chines, and thereforemachine failuresarecommon.

(4) Storage is provided by inexpensive IDE disks at-

tached directly to individual machines. A distributed file

system [8] developed in-houseisused to managethedata

stored on these disks. Thefile system uses replication to

provide availability and reliability on top of unreliable

hardware.

(5) Users submit jobs to a scheduling system. Each job

consistsof aset of tasks, and ismapped by thescheduler

to a set of availablemachineswithin acluster.

3.1 Execution Overview

The Map invocations are distributed across multiple

machines by automatically partitioning the input data

To appear in OSDI 2004 3

Why not map
reduce?

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 4

Zaharia, Matei, et al. "Spark: Cluster computing
with working sets." HotCloud 10.10-10 (2010):
95.

Iterative algorithms

Many common machine learning algorithms
repeatedly apply the same function on the same

dataset
(e.g., gradient descent)

MapReduce repeatedly reloads
(reads & writes) data

which is costly

Why not map
reduce?

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 5

Zaharia, Matei, et al. "Spark: Cluster computing
with working sets." HotCloud 10.10-10 (2010):
95.

Interactive analytics

Load data in memory and query repeatedly

MapReduce would re-read data

Lightning-fast cluster computing

Spark at a Glance.

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 6

Before we talk about Spark… Let’s talk about Scala

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 7

Java Generics

Scala

Lightbend (Typesafe)

Coursera: Functional Programming in Scala,
École Polytechnique Fédérale de Lausanne

Prof. Martin Odersky

From Fast Single Cores to Multicores

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 8

Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten and Krste Asanovic

Martin Odersky, "Working Hard to Keep It Simple”. OSCON Java 2011

Typical Bare Metal Servers

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 9

https://softlayer.com

High Performance Computing (15/11)

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 10

http://top500.org/lists/2015/11/

RANK SITE CORES

1 National Super Computer Center in Guangzhou 3,120,000
China

2 DOE/SC/Oak Ridge National Laboratory 560,640
United States

3 DOE/NNSA/LLNL 1,572,864
United States

4 RIKEN Advanced Institute for Computational Science (AICS) 705,024
Japan

5 DOE/SC/Argonne National Laboratory 786,432
United States

6 DOE/NNSA/LANL/SNL 301,056
United States

7 Swiss National Supercomputing Centre (CSCS) 115,984
Switzerland

8 HLRS - Höchstleistungsrechenzentrum Stuttgart 185,088
Germany

9 King Abdullah University of Science and Technology 196,608
Saudi Arabia

10 Texas Advanced Computing Center/Univ. of Texas 462,462
United States

Concurrency and Parallelism

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 11

Manage concurrent execution threads

Execute programs faster using the
multi-cores

What can go wrong…?

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 12

var x = 0

async { x = x + 1}

async { x = x * 2}

// x could be 0, 1, 2

Concurrent
Threads

Shared Mutable
State

Threads in Java

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 13

http://booxs.biz/EN/java/Threads%20in%20Java.html

Manage concurrent & parellel executions

Threads Executors ForkJoin

Parallel
Streams

Completable
Futures

Scala at a Glance

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 14

Static Typing Functional

Lightweight Syntax Object Oriented

Scala

- High Order Functions
- Immutable over mutable
- Avoid Shared Mutable States
- Efficient Immutable Data Structures

Scala Collections
Help to Organize Data

Immutable collections
never change.

Collections are Sequential
or Parallel

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 15

https://docs.scala-
lang.org/overviews/collections/overview.html

Shared Memory Data Parallelism (Scala Parallel collections)

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 16

Combine Results

Threads run independently

Split data
CPU

Thread
0

CPU
Thread

1

CPU
Thread

2

result = ratings.map(…)

Distributed Data Parallelism

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 17

Network latency is a problem

Combine Results

Nodes run independently

Split data among nodes

Node 1

Node 3

Node 2

Node 4

result = ratings.map(…)

Distribution: Failure and Latency

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 18

Task Latency Humanized (Latency * 1 Billion)
L1 cache reference 0.5 ns 0.5 s One heart beat (0.5 s)

Branch mispredict 5 ns 5 s Yawn

L2 cache reference 7 ns 7 s Long yawn
Mutex lock/unlock 25 ns 25 s Making a coffee

Main memory reference 100 ns 100 s Brushing your teeth
Compress 1K bytes with Zippy 3,000 ns = 3 µs 50 min One episode of a TV show (including ad breaks)

Send 2K bytes over 1 Gbps network 20,000 ns = 20 µs 5.5 hr From lunch to end of work day
SSD random read 150,000 ns = 150 µs 1.7 days A normal weekend

Read 1 MB sequentially from
memory

250,000 ns = 250 µs 2.9 days A long weekend

Round trip within same datacenter 500,000 ns = 0.5 ms 5.8 days A medium vacation
Read 1 MB sequentially from SSD* 1,000,000 ns = 1 ms 11.6 days Waiting for almost 2 weeks for a delivery

Disk seek 10,000,000 ns = 10 ms 16.5 weeks A semester in university
Read 1 MB sequentially from disk 20,000,000 ns = 20 ms 7.8 months Almost producing a new human being

Send packet CA->Netherlands->CA 150,000,000 ns = 150
ms

4.8 years Average time it takes to get a bachelor’s degree

Memory Disk
https://gist.github.com/jboner/2841832

http://norvig.com/21-days.html

Network

Fast--------------->Slow

https://gist.github.com/jboner/2841832
http://norvig.com/21-days.html

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 19

Proceedings of the 9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 2012.

Spark Resilient Distributed Datasets (RDD)

Immutable collection of objects (Read-only)

Partitioned across machines

Once defined, programmer treats it as available (System re-builds it if lost /
leaves memory)

Users can explicitly cache RDDs in memory

Re-use across MapReduce-like parallel operations

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 20

Main Challenge: Efficient fault-tolerance

Should be easy to re-build if part
of data (e.g., a partition) is lost.

Achieved through coarse-grained
transformations and lineage

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 21

Fault-tolerance

Coarse transformations

• e.g., map applies the same function to the data items.

Lineage:

• Series of transformations that led to a dataset.

If a partition is lost, there is enough information to re-
apply the transformations and re-compute it

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 22

Programming Model

Developers write a drive program

• high-level control flow

Think of RDDs as objects that represent datasets that you distribute
among several workers, and transform and apply actions in parallel.

Can also use restricted types of shared variables

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 23

Spark runtime

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 24

Worker
tasks

results
RAM

Input Data

Worker

RAM

Input Data

Worker

RAM

Input Data

Driver

Figure 2: Spark runtime. The user’s driver program launches

multipleworkers, which read datablocks from adistributed file

system and can persist computed RDD partitions in memory.

ule tasks based on data locality to improve performance.

Second, RDDs degrade gracefully when there is not

enough memory to store them, as long as they are only

being used in scan-based operations. Partitions that do

not fit in RAM can be stored on disk and will provide

similar performance to current data-parallel systems.

2.4 Applications Not Suitable for RDDs

As discussed in the Introduction, RDDs are best suited

for batch applications that apply the same operation to

all elements of a dataset. In these cases, RDDs can ef-

ficiently remember each transformation as one step in a

lineagegraph and can recover lost partitions without hav-

ing to log large amounts of data. RDDs would be less

suitable for applications that make asynchronous fine-

grained updates to shared state, such as a storage sys-

tem for aweb application or an incremental web crawler.

For these applications, it is more efficient to use systems

that perform traditional update logging and data check-

pointing, such as databases, RAMCloud [25], Percolator

[26] and Piccolo [27]. Our goal is to provide an efficient

programming model for batch analytics and leave these

asynchronous applications to specialized systems.

3 Spark Programming Inter face

Spark provides theRDD abstraction through a language-

integrated API similar to DryadLINQ [31] in Scala [2],

a statically typed functional programming language for

the Java VM. We chose Scala due to its combination of

conciseness (which isconvenient for interactiveuse) and

efficiency (due to static typing). However, nothing about

the RDD abstraction requires a functional language.

To use Spark, developers write a driver program that

connects to a cluster of workers, as shown in Figure 2.

The driver defines one or more RDDs and invokes ac-

tions on them. Spark code on the driver also tracks the

RDDs’ lineage. The workers are long-lived processes

that can store RDD partitions in RAM across operations.

As we showed in the log mining example in Sec-

tion 2.2.1, users provide arguments to RDD opera-

tions like map by passing closures (function literals).

Scala represents each closure as a Java object, and

these objects can be serialized and loaded on another

node to pass the closure across the network. Scala also

saves any variables bound in the closure as fields in

the Java object. For example, one can write code like

var x = 5; r dd. map(_ + x) to add 5 to each element

of an RDD.5

RDDs themselves are statically typed objects

parametrized by an element type. For example,

RDD[Int] is an RDD of integers. However, most of our

examples omit typessince Scala supports type inference.

Although our method of exposing RDDs in Scala is

conceptually simple, we had to work around issues with

Scala’s closure objects using reflection [33]. We also

needed more work to make Spark usable from the Scala

interpreter, as we shall discuss in Section 5.2. Nonethe-

less, we did not have to modify the Scala compiler.

3.1 RDD Operations in Spark

Table 2 lists the main RDD transformations and actions

available in Spark. We give the signature of each oper-

ation, showing type parameters in square brackets. Re-

call that transformations are lazy operations that definea

new RDD, while actions launch a computation to return

a value to the program or write data to external storage.

Note that someoperations, such as join, areonly avail-

able on RDDs of key-value pairs. Also, our function

names arechosen to match other APIs in Scala and other

functional languages; for example, map is a one-to-one

mapping, while flatMap maps each input value to one or

more outputs (similar to the map in MapReduce).

In addition to these operators, users can ask for an

RDD to persist. Furthermore, users can get an RDD’s

partition order, which is represented by a Partitioner

class, and partition another dataset according to it. Op-

erations such as groupByKey, reduceByKey and sort au-

tomatically result in a hash or range partitioned RDD.

3.2 Example Applications

We complement the data mining example in Section

2.2.1 with two iterative applications: logistic regression

and PageRank. The latter also showcases how control of

RDDs’ partitioning can improve performance.

3.2.1 Logistic Regression

Many machine learning algorithms are iterative in nature

because they run iterative optimization procedures, such

as gradient descent, to maximize a function. They can

thus run much faster by keeping their data in memory.

Asan example, the following program implements lo-

gistic regression [14], acommon classification algorithm

5We save each closure at the time it is created, so that the map in

this example will always add 5 even if x changes.

RDD

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 25

Immutable (read-only) collection of objects partitioned
across a set of machines, that can be re-built if a partition is
lost.

Constructed in the following ways:

• From a file in a shared file system (e.g., HDFS)

• Parallelizing a collection (e.g., an array) divide into partitions and send to
multiple nodes

• Transforming an existing RDD (applying a map operation)

Hadoop Distributed FS (HDFS) architecture – Different than Spark

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 26

RDD

It does not exist at all time. Instead, there is enough
information to compute the RDD when needed.

RDDs are lazily-created and ephemeral

Lazy: Materialized only when information is extracted from
them (through actions!)

Ephemeral: Might be discarded after use

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 27

Transformations (Lazy)

Lazy operations. The results
are not immediately computed

Create a new RDD

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 28

Actions (Eager)

RDDs are computed every time
you run an action.

Return a value to the program or
output the results (e.g., HDFS)

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 29

Why Spark?

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 30

Zaharia, Matei, et al. "Spark: Cluster computing
with working sets." HotCloud 10.10-10 (2010):
95.

MapReduce:
Simple API (map, reduce)

Fault-tolerant

Spark:

• Simple and rich API.

• Fault-tolerant

• Reduces latency using ideas from
functional programming (immutability,
in-memory).

• l00x more performant than MapReduce
(Hadoop), and more productive!

Logistic regression in Hadoop and Spark

How does a Spark program looks like? (PySpark)

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 31

Out[]: There are 20 movies about zombies... scary.

Driver

RDD

Transformation

Action

How does a Spark program looks like? (PySpark)

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 32

Out[]: There are 20 movies about zombies... scary!

Out[]: There are 524 movies about romance <3

Driver

RDD
Transformation

Action

Let’s think about what happened…

Caching and Persistence

To prevent re-computing the RDDs, we can persist the data.

cache:

• Memory only storage

persist:

• Persistence can be customized at different levels (e.g., memory, disk)

• The default persistence is at memory level

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 33

How does a Spark program looks like? (PySpark)

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 34

Out[]: There are 20 movies about zombies... scary!

Out[]: There are 524 movies about romance <3

Driver

RDD

Transformation

Action

Persist

In the second time, the lines RDD was loaded from memory

Cluster Topology

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 35

Driver
Program

Cluster
Manager
(YARN/Mesos)

Worker Node
(Executor)

Worker Node
(Executor)

Worker Node
(Executor)

Run tasks
Return Results
Persist RDDs

Contains the main
Creates RDDs
Coordinates the execution
(transformations and actions)

YARN-cluster mode

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 36

https://blog.cloudera.com/blog/2014/05/apache-spark-resource-management-and-yarn-app-models/

YARN-client mode

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 37

https://blog.cloudera.com/blog/2014/05/apache-spark-resource-management-and-yarn-app-models/

Difference between running modes

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 38

https://blog.cloudera.com/blog/2014/05/apache-spark-resource-management-and-yarn-app-models/

Cluster Topology - Evaluation

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 39

Out[]: There are 20 movies about zombies... scary.
Action

Where are the zombie movies printed?

Cluster Topology - Evaluation

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 40

Actions usually communicate between workers’ nodes and the
driver’s node.

It is important to think about where the tasks are going to be
executed.

Large RDDs may cause out of memory errors in the driver node
for some actions (e.g., collect). In that case, it’s a good idea to
output directly from the worker.

Reduction Operations

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 41

Traverse a collection and combine elements to produce a single combined result.

reduce(op)

• Reduces the elements of this RDD using the specified associative and cumulative operator.

fold(zeroValue, op)

• Aggregate the elements of each partition, and then the results for all the partitions, using a given
associative function and a neutral "zero value."

• Requires the same type of data in the return.

aggregate(zeroValue, seqOp, combOp)

• Aggregate the elements of each partition, and then the results for all the partitions, using a given
combine functions and a neutral "zero value."

• Possible to change the return type.

Pair RDD

Usually, we have large datasets that we
can organize by a key (e.g., movie_id,
user_id)

Useful because it improves how we
handle the RDD

Pair RDDs have special methods for
working with the data associated to
the keys.

Dean, Jeffrey, and Sanjay Ghemawat.
"MapReduce: simplified data
processing on large
clusters." Communications of the
ACM 51.1 (2008): 107-113.

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 42

GroupByKey example

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 43

ReduceByKey example

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 44

Word Count example

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 45

Out[]:

('the', 20711)

('and', 15343)

('a', 10785)

('of', 9892)

('film', 9206)

('by', 8377)

('in', 7646)

('The', 7362)

('is', 6290)

('was', 5728)

Join

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 46

You can combine Pair RDDs using a join.

The combination can be by:

Inner joins (join)

• Key that appear in both Pair RDDs

Outer joins (left0uterJoin/right0uterJoin)

• Guarantees that on the RDD all they keys (left or right) will be present

• Keys that do not appear on the other RDD have a None value.

Shuffling and Partitioning

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 47

Shuffle

Shuffle and partitioning is expensive! As it they have to send data in the network

Partitioning Partitioning

Spark Streaming

Motivation

• Big Data never stops

• Data is being produced all the time

Spark provides a DStream to handle sources that send data
constantly

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 48

DStream

Discretized Stream represents a continuous stream of data

Input data stream is received from source, or the processed data stream generated by transforming the input stream. Internally

DStream is a continuous series of RDDs

Each RDD in a DStream contains data from a certain interval

Similarly, we can apply transformations and actions to Dstreams.

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 49

As a summary

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 50

Spark is a distributed big data processing framework.

• Distribution brings new concerns: Node failure and latency

Uses Resilient Distributed Datasets (RDD) to distribute and parallelize the data.

• RDDs are lazily-created and ephemeral

• Caching and persistence is used to preserve a RDD in memory, disk, or both

RDDs are fault tolerant

• Able to recover the state of an RDD using coarse-grained transformations and lineage.

Transformations are lazy (e.g., map, filter, groupBy, sortBy, reduceByKey)

Actions are eager (e.g., take, collect, reduce, first, foreach)

The topology of the cluster matters

Working with RDDs implies shuffling and partitioning

• Impact on performance due to latency

Spark provides Big Data Streaming processing via DStreams

That’s all for now!

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 51

Thanks!

Questions?

Frederick Ayala-Gómez
frederick.ayala@aalto.fi

Tutorial: Batch and streaming processing with PySpark
Monday, 19 March, 14:15 » 16:00,
T2 / C105 (T2), Tietotekniikka, Konemiehentie 2

Credits and References

03/16/2018 LECTURE 09 SPARK FOR BATCH AND STREAMING PROCESSING 52

• Slides from Michael Mathioudakis from previous Aalto’s Modern Database Systems Course.
• https://spark.apache.org/docs/2.2.0/streaming-programming-guide.html
• Big Data Analysis with Scala and Spark, Dr. Heather Miller, École Polytechnique Fédérale de

Lausanne.
• Zaharia, Matei, et al. “Learning Spark: Lightning-Fast Big Data Analysis”. O'Reilly Media 2015.
• Zaharia, Matei, et al. "Spark: Cluster Computing with Working Sets." HotCloud 10 (2010): 10-

10.
• Zaharia, Matei, et al. "Resilient distributed datasets: A fault-tolerant abstraction for in-

memory cluster computing." Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation.

• Learning Spark: Lightning-Fast Big Data Analysis, by Holden Karau, Andy Konwinski, Patrick
Wendell, Matei Zaharia

https://spark.apache.org/docs/2.2.0/streaming-programming-guide.html

